LENGTH MEASURING MACHINE GENERAL CATALOG

IIESTOOL-KANON

LENGTH MEASURING MACHINE GENERAL CATALOG

E-PEAK digital caliper	E-PEAK	2
Flat-head caliper	E-PITA (flat-head digital caliper) / PITA (flat-head vernier caliper)	3
	ULJ (judgment)	4
	PLUS10	5
Large-size digital caliper, dial caliper	EMA / DMK-J	6
Caliper for measuring circular hole pitch	E-RX / E-RZ	7
	E-RM-J	8
	E-RX-J / RM-DX	9
	RM (II) / RM-S	10
	E-RM60B / E-RM30DX	11
	E-RM (II) / E-RM-S / special-purpose gage block	12
Digital depth gauge	E-DP-J / E-DP2J (extra thin)	13
	E-TH (E-thin hole) / E-RD (cave)	14
Depth gage	E-LSDM / LSDM	15
	ESDM / SDM	16
	BSDM / BSD-P	17
	SD-P / TH (thin hole)	18
Popular vernier caliper	KSM-FF / SM	19
	M / M60P	20
Caliper with curre jaw	E-RA (E-curre jaw) / RA (curre jaw)	21
Caliper for narrow space	E-ROBA / ROBA	22
Long jaw caliper	E-LSM / LSM	23
Inside caliper	E-ICM-J / E-ICM / ICM	24
Digital blade caliper	E-BL	25
Digital wide caliper	E-WK	25
Digital point vernier caliper	E-PK	26
Digital pipe caliper	E-PM	26
Digital neck caliper	E-NK	26
Flange caliper	FCM (for inspection) / FBM (for working)	27
Short leg caliper	SBM	28
Inspection instrument	SNAP GAGE	28
Vernier caliper	SCM / SCML	29
Digital scale	ES-B / TES	30
Digital height gage	EHK30J	31
Printer	TPK-3	32
Scriber	Scriber / Rotating scriber	32
Height gage	SHT-3 / SHT-1	33
One-axis measuring machine	X-600 / X-1000 (straight line)	34
Vision measuring machine	EXLON-Y	35
Coordinate measuring machine	EXLON-Z III 453	36
BESTOOL-KANON	Kanon About vernier calipers	$37 \cdot 38$
Japanese Industrial Standards	JIS About vernier calipers	$39 \cdot 40$
Parts list	SM - M type / KSM type / SCM type	$41 \cdot 42$
	SDM type / SHT-3 type / SHT-1 type	$43 \cdot 44$

 Contact our company or your dealers,

Adequate for narrow space where the display is hard to see
REGISTEREDASUTILITYMODEL(Japan)

New

Maximum values and minimum values are automatically stored.

For measuring inner diameter, the maximum value (Max) mode

For measuring outer diameter at a dark location, the minimum value (Min) mode is convenient!

Reading at hand

21st century version of standard caliper!

Flat-headverniercaliperseries

With "Flat head", measurement can be conducted easily from any corners.

E-PITA: Specifications

Model	Measuring length	Resolution	Instrumental error	Overall length	Power supply	Weight	A	B	C	D	E	F	G	H
E-PITA10	100	0.01	± 0.02	191	$\begin{aligned} & \text { SR44 } \\ & 1 \text { piece } \end{aligned}$	160 g	184	16	76	40	14	30	7	3.8
E-PITA15	150			241		170 g	234	16	76	40	14	30	7	3.8
E-PITA20	200			291		190 g	284	16	76	40	14	30	7	3.8
E-PITA30	300		± 0.03	396		280 g	388	16	103	64	14	47	8	4.8
E-PITA40	400		± 0.05	496		400 g	488	16	103	64	14	47	8	-

* E-PITA40 is not equipped with any depth bar.

Model	Measuring length	Resolution	Instrumental error	Overall length	Power supply	Weight	A	B	C	D	E	F	G	H
E-PITA150 ${ }^{\prime \prime}{ }^{\prime \prime}$	$150 \mathrm{~mm} \times 6^{\prime \prime}$	$\begin{gathered} \frac{0.01 \mathrm{~mm}}{\times} \\ 0.0005^{\prime \prime} \end{gathered}$	± 0.02	241	SR44 1 piece	170 g	234	16	76	40	14	30	7	3.8
E-PITA200 ${ }^{\prime \prime \prime}$	$200 \mathrm{~mm} \times 8^{\prime \prime}$			291		190 g	284	16	76	40	14	30	7	3.8
E-PITA300 $\times 12{ }^{\prime \prime}$	$300 \mathrm{~mm} \times 12^{\prime \prime}$		± 0.03	396		280 g	388	16	103	64	14	47	8	4.8

PITA	Specifica	tions										(Unit : mm)	
Model	Measuring length	Minimum reading	Instrumental error	Overall length	Weight	A	B	C	D	E	F	G	H
PITA10	100	$\left[\begin{array}{c} 0.05 \\ \text { Division of } 39 \mathrm{~mm} \\ \text { into } 20 \text { equal parts } \end{array}\right]$	± 0.05	171	100 g	166	13.5	65	34.5	11	25	5	2.4
PITA15	150			237	140 g	230	16	76	40	14	28	7	3.8
PITA20	200			287	160 g	280	16	76	40	14	28	7	3.8
PITA30	300			409	340 g	400	20	111	64	19	48	9	3.8
PITA40	400		± 0.06	515	420 g	506	20	111	64	19	48	9	-

* PITA40 is not equipped with any depth bar. $\quad *$ Minimum reading of PITA10 is division of 19 mm into 20 equal parts.

With "Judgment function", instantaneous sorting of accepted products and rejected products is available.

"Circular center distance of holes measurement function" is added to the new multi-functional caliper.

Inside measurement
Outside measurement

Comparative measurement (ABS function)

Point measurement

Plus 10 provides further ...

Measurement on edge face height from a face (measurement with flat-head)

- In addition to normal measurement, a judgment function is provided.
- By mounting a hole pitch probe attachment to the inside of the outside jaw with screws, "circular hole center distance measurement" is available.
(*By adding 10 to the indicated value, the measured value is obtained.)

PLUS 10 : Specifications

Model	Measuring length	Resolution	* Instumental error	Overall length	Power supply	Weight	A	B	C	D	E	F	G	H	I
PLUS10-15	150	0.01	± 0.03	241	SR44 1 piece	170 g	234	16	76	40	14	30	7	3.8	10
PLUS10-20	200			291		190 g	284	16	76	40	14	30	7	3.8	10
PLUS10-30	300		± 0.04	396		280 g	388	16	103	64	14	47	8	4.8	10

* This is not an instrument error of circular pitch measurement.

Digital caliper adequate for large scale measurement

DMK-J

 Black scale on gold base provides easy-to-see display and is adequate for instantaneous reading.With "Scale dial", instantaneous reading is available. The caliper with dial allows quick reading of measurement.

E-RX / E-RZ

"Digital direct reading system" for hole pitch through easy operation

For center distance measurement "between holes"

E-RX30B

\square E-RX : Specifications
(Unit : mm)

Model	Measuring length	Resolution	Instrumental error	Minimum hole diameier	Maximum hole diameter	Power supply	Weight	A	B	C	D	E	Θ
E-RX20B	20~200	0.01	± 0.03	¢3	$\phi 19$	SR44 1 piece	360 g	370	16	35	\$20	¢2	40°
E-RX30B	20~300						582 g	500	20	35	\$20	$\phi 2$	40°

For measurement of distance "between edge face and hole" E-RZ30B

E-RM-J

Adequate for center to center distance measurement!

Measurement of distance between center to center of holes
 the value.

Measurement of distance between edge face and hole

By setting the upper side offset value (15.00 mm) and the lower offset value (7.50 mm), this instrument allows the measured center distance to be indicated as actual size. This saves time for addition or subtraction of indicated value that is required by former instruments, resulting easier use.

Since one unit of this caliper allows measurement of center distance of holes and distance between edge face and hole through direct reading, the product eliminates the need for preparing two units for two types of measurement, resulting in convenient use.

- Offset value setting in the upper side and the lower side can be easily conducted by pressing the "SET" button.

E-RM-J: Specifications

Model	Measuring range		Resolution	Instumental eror	Winimumbediander	Maximunte dianter	Power supply	Weight	A	B	C	D	E	F	G	H	Θ
	Pith for upear side	Pitch or owerside															
E-RM15J	15~150	7.5~150	0.01	± 0.05	¢ 3	¢ 14	SR44 1 piece	300 g	260	50	16	¢15	\$1.9	38	32	71	40°
E-RM20J	15~200	7.5~200						340 g	310								
E-RM30J	15~300	7.5~300						380 g	405								

E-RX-J
 Adequate for center distance measurement for holes at different levels

Digital direct reading of center distance measurement "between holes with equal diameter at different levels"

E-RX30J

(A)

Since the probe of main scale moves vertically different levels is available.

E-RX-J: Specifications
(Unit : mm)

Model	Measuring range	Resolution	Instrumental error	Minimumble diameter	Maximum hole diameter	Power supply	Weight	A	B	C	D	E	F	Θ
E-RX30J	10~300	0.01	± 0.05	$\phi 2$	$\phi 9$	SR44 1 piece	300 g	435	18~52	16	42	$\phi 1$	$\phi 10$	40°

RM-DX

Adequate for center to center distance measurement!

For cener to center distance with different diameters!

RM-S
 Adequate for center distance measurement for small diameter holes

Vernier caliper for measuring circular hole center distance adequate for "small diameter hole".

RM-S	ecifi	tions													Unit	mm)
Model	Measuring range		Minimum reading	Instrumental error	Minimumhol diameer	Maximum hole diameter	Weight	A	B	C	D	E	F	G	H	Θ
	Pith for upper side	Pith for ower side														
RM-S15	5~150	3~150	[into 20 equal parts]	± 0.07	\$1	¢ 3.5	180g	280	96	¢ 4	$\phi 0.8$	26	50	20	20	40°

E-RM60B

With "measuring length of 600 mm ", this large digital caliper is adequate for measuring holes with equal diameter on long work.

E-RM30DX

Direct reading type multi-functional digital scale for measuring circular hole center distance that allows "three types of measurement" by replacing the probe

E-RM(II) /E-RM-S

Caliper for measuring circular hole center distance adequate for "offset system" with vertical movement of probe and measurement of "small diameter hole and small surface"

E-RM	II) : Sp	ecifica	tions														(Unit : mm)		
Model	Measuring range		Resolution		Minimum	Maximum	Po	W	A	B	C	D	E	F	G	H	J	K	Θ
	Pith hor upper side	Pith for lower side			hole diameter	hole diameter			A				E	F	G	H	J	K	Θ
E-RM(II) 15 B	25~150	20~150	0.01	± 0.05	\$1	\$5	SR441 piece	160 g	254	70	$\phi 6$	\$0.2	-	\$0.2	\$6	\$6	40	16	53°
E-RM(II)30B	35~300	25~300			¢3	\$29		530 g	438	120	\$30	\$2	50	¢ 2	\$10	$\phi 30$	50	20	40°
E-RM(II) 60 B	35~600	25~600						1.7 kg	799								70	25	

Method of setting with special-purpose gage block

Method of measurement on upper and lower sides with E-RM-B series (E-RM60B/E-RM(II)-B/E-RM-S-B) special-purpose gage block

[In case of E-RM60B]

Measurement on lower side
Position the lower measurement section to the dimension A side of the gage block. At this time, ensure that no clearance of measuring surface is present in the edge face side. Press the ON/OFF switch and then press the ZERO/ABS switch.
At this time, dimension A of 10 mm becomes the zero point.

* When the measured value is indicated, add or subtract it to or from dimension A of 10 mm .
(Example 1) If " 8.00 " is indicated:
$8.00+10 \mathrm{~mm}$ (dimension A$)=18.00 \mathrm{~mm}$ (actual size)
(Example 2) If " -0.05 " is indicated:
$-0.05+10 \mathrm{~mm}($ dimension $A)=9.95 \mathrm{~mm}$ (actual size)

Measurement on upper side
Position the upper measurement section to the dimension B side of the gage block. At this time, ensure that the probe is securely inserted into the hole.
Press the ON/OFF switch and then press the ZERO/ABS switch.
At this time, dimension B of 100 mm becomes the zero point.

* When the measured value is indicated, add or subtract it to or from dimension B of 100 mm .
(Example 3) If " 25.00 " is indicated:
$25.00+100 \mathrm{~mm}($ dimension $B)=125.00 \mathrm{~mm}$ (actual size)
(Example 4) If "-25.00" is indicated:
$-25.00+100 \mathrm{~mm}$ (dimension $B)=75.00 \mathrm{~mm}$ (actual size)

With "Span replacement", this depth gage is adequate for measuring depth of hole with wide opening.

E-DDVE Extra thin

Adequate for measurement of depth of very small hole

With " $\phi 0.5 \mathrm{~mm}$ depth bar", this product is adequate for measurement

Adequate for measurement of depth of thin hole!

For hook measurement, depth measurement, and step measurement!

E-LSDM/LSDM

Adequate for measurement of depth of large-diameter hole

With "Long base", this long base depth gage is adequate for measurement of depth of large-diameter hole.

ESDM / SDM

Depth gage adequate for measurement of depth of hole with wide opening

With "Hook", this depth gage is adequate for measurement of depth of hole without end.

Adequate for measurement of hook in normal hole
"Standard type", Carl Mahr type depth gage equipped with hook without jogging function

SD-P
 Adequate for measurement of depth of normal hole

"Standard type", Carl Mahr type depth gage without jogging function

T Thin hole Adequate for measurement of depth of thin hole

With " $\phi 1.5 \mathrm{~mm}$ depth bar", this thin hole depth gage is adequate for measurement of depth of thin hole.

KSM-FF / SM
 Standard vernier caliper for normal measurement

This standard scale type vernier caliper provides measurement without fatigue of eyes.

M/M-60P

"Standard type"

- M : Specifications
(Unit : mm)

Model	Measuring length	Minimum reading	Instrumental error	Weight	A	B	C	D	E	F	G	H	I
M45	450	$\left[\begin{array}{c} 0.05 \\ {\left[\begin{array}{c} \text { Division of } 39 \mathrm{~mm} \\ \text { into } 20 \text { equal parts } \end{array}\right]} \end{array}\right.$	± 0.10	900 g	625	161.5	25	90	25	60	12.5	6	12.5
M50	500			1.13 kg	670	161.5	25	90	25	60	12.5	6	12.5
M60	600		± 0.11	1.25 kg	780	161.5	25	90	25	60	12.5	6	12.5
M100	1000		± 0.15	3.50 kg	1250	222	32	130	32	85	16	8	15

* Production of M40 was ceased. As an alternative product, we sell PITA40. (See page 3.)

Although the measuring length is large, this vernier caliper is light and can be held easily with one hand. Also the price is reasonable.

M-P	Specificatio											(Unit : mm)	
Model	Measuring length	Minimum reading	Instrumental error	Weight	A	B	C	D	E	F	G	H	I
M60P	600	$\left[\begin{array}{c} 0.05 \\ {\left[\begin{array}{c} \text { Division of } 39 \mathrm{~mm} \\ \text { intoo } 20 \text { equal parts } \end{array}\right.} \end{array}\right]$	± 0.11	612g	800	111.6	20	64.2	18.9	48	9.4	4	8
M100P	1000		± 0.15	1.9 kg	1250	161.5	25	90	25	60	12.5	6	12.5

* M60P M100P are not equipped with any JIS mark. The instrumental error is within the JIS specification.

5-1 E-Curre Jaw / M Curre Jaw

Adequate for measurement at a

With "Curre jaw", this caliper is adequate for measurement of work for which straight jaws cannot be used.

Adequate for measurement of inside and outside of narrow and deep part!

Model	Measuring length	Resolution	Instrumental error	Power supply	Weight	A	B	C	D	E	F	G	H
E-ROBA15B	150	0.01	± 0.03	SR44 1piece	180 g	247	34	64	17	6.5	16	48	9
E-ROBA20B	200				200 g	297							

ROBA: Specifications
(Unit : mm)

Model	Measuring length	Minimum reading	Instrumental error	Weight	A	B	C	D	E	F	G	H	I	J
ROBA15	150	$\left[\begin{array}{c} 0.05 \\ {\left[\begin{array}{c} \text { Division of } 19 \mathrm{~mm} \\ \text { into } 20 \text { equal parts } \end{array}\right]} \end{array}\right.$	± 0.07	270 g	250	34	64	17	6.5	20	48	9	8	4
ROBA20	200			310 g	300									
ROBA30	300		± 0.08	370 g	410									

E-LSM / LSM

Adequate for measurement of diameter of ball, pipe, etc.!

E-ICM-J/E-ICM/ICM

Adequate for measurement of

 inside in a deep locationWith "Long and thin jaw", this inside caliper is adequate for measurement of inside in a deep location.

With "Blade jaw", this digital blade caliper is adequate for measurement of outside of groove on work with narrow groove and groove interval.

Direct-reading type digital caliper

Adequate for measurement in same direction!

E-PK / E-PM / E-NK

Adequate for measurement of special outside

Point vernier caliper for narrow groove interval, pipe caliper for wall thickness of curvature, and neck caliper for groove part

Kanon original flange caliper adequate for measurement of dimensions "within JPI standard"

FBM For working

With "Short leg jaw", this product can be easily used for measurement of step machining part in a hole.

SNAP GAUGE

For inspection of precision of vernier caliper
With "Various sizes", this snap gauge allows quick inspection of inside and outside of vernier caliper.

SCM / SCML
 High-precision reading for inside and outside measurement

With "Jogging function", high precision is provided. Also various sizes are available with this vernier caliper.

Adequate for positioning of machine tool, measurement equipment, and so on

Convenience digital scale on which the indication of "digital direct reading type" scale can be read directly.

ES30B

- ABS with absolute origin is built in and therefore zero setting is not required each time the power is turned on.
- With a measurement data output function, a statistical process control system or a measurement system can be configured.
\square ES-B: Specifications
(Unit : mm)

Model	Measuring length	Resolution	Allowable measuring range	Instrumental error	Power supply	Weight	A	B	C	D	E	F
ES10B	100	0.01	120	± 0.03	$\begin{gathered} \text { SR44 } \\ 1 \text { piece } \end{gathered}$	360 g	256	220	16	244	¢ 6	10 \$ 5.2
ES20B	200	0.01	220			480 g	356	320	16	344	$\phi 6$	10 \$ 5.2
ES30B	300	0.01	320			590 g	456	420	16	444	$\phi 6$	10 \$ 5.2

Digital thickness scale

Easy measurement of clearance in a narrow location!

TES 10B

TES	pecifications									(Unit : mm)	
Model	Measuring range	Resolution	Instrumental error	Power supply	Weight	A	B	C	D	E	F
TES5B	$0.2 \sim 4.8$	0.01	± 0.03	SR44 1piece	158 g	225	10	3.3	0.1	1	49
TES10B	0.5~9.5				218 g	330	10	3.3	0.3	3	102

EHK30J

Adequate for various types of height measurement!

EHK30J

ABS/INC measurement

- A scriber for SHT-3-30J is provided as a standard component like the rotating scriber.
- Two scriber measuring surfaces of "Kurukuru" are on the same plane. Since the product is an absolute (ABS) type, zero setting is not required each time the power is turned on.
- Zero setting can be conducted at any positions, and relative measurement is available.
- Digital display provides easy reading.
 surfaces are on the same plane.

Model	Measuring range (*)	Resolution	Instrumental error	Power supply	Weight	A	B	C	D	E	F	G	H	1	J
EHK30J	0~300	0.01	± 0.03	SR44 1piece	2.2 kg	450.5	120.0	68.0	32.0	19.9	94.0	32.1	20.0	10.0	13.1

*When the rotating scriber "Kurukuru" is used, the measuring range is 10 to 300 mm .

TPK-3

With various statistical parameters, measurement data is securely controlled.

SCRIBER

Measuring surface for height gage

Precisely finished scriber with carbide tip

(E)
(F) RS-15

Rotating scriber "Kurukuru" : Dimensions (Unit : mm)

Type	A	B	C	D	E	F
RS-10	105.5	36	12.7	9		
RS-15	68	36.7	12.7	6.35	10	10
RS-20	105	33	9	9		

SHT-3/SHT-1

Adequate for measurement of height for

 vertically long objectsWith "Vertical movement of main scale", this height gage can be used for instantaneous measurement.

Y-600/K=1000 Straight line

Measurement of shaft with

 easy operationWith "3 types of probe placed in line", this oneaxis measuring machine can be used for various types of dimension measurement.

With "Manual operation and noncontact method", this vision measuring machine allows high-precision measurement for small parts and soft objects.

Manual and noncontact type vision measuring machine
EXLCLN:Y

- Only by clicking the measurement location, multipoint measurement can be automatically conducted.
- Basic measurement for point, line, circle, arc, etc. (500 points at the maximum)
- Indirect measurement for distance, angular midpoint, etc.
- Coordinate system setting for axis correction. origin movement, etc.
- Calling and recalculation
- Drawing is conducted at the same time as measurement.
- Recalculation can be conducted only by clicking the measurement location on the graph, instead of number for recalculation of result.
- Graphs can be stored in a DXF file It can be transferred to CAD/CAM, allowing editing.
- As measurement data, in addition to X and Y coordinate values, geometrically calculated values such as roundness and straightness can be outputted at the same time.
- Also the shortest distance and the longest distance can be calculated.
- CNC machines (automatic) are also provided.

■ EXLON Y: Specifications

Model	EXLON Y 45
Measuring range for X axis	400 mm
Measuring range for Y axis	500 mm
Resolution	0.001 mm
Precision on each axis	$5+5 \mathrm{~L} / 1000 \mu \mathrm{~m}$
Operation method	Manual
Sliding section	LM guide
Sensor	Optical linear scale
Environmental conditions: Temperature	$18^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$
Environmental conditions: Humidity	$30 \% \sim 80 \%$
Detection of image	High-definition image CCD camera
Lighting system	LED epi-illumination, transillumination (optional)
Zoom lens-barrel	$1 \times$ to $4 \times$ zoom lens
Personal computer	OS : Windows 7 Professional
A	1300 mm
B	720 mm
C	800 mm
Weight	290 kg

[^0]
EXLON-Z III 453

With "Manual operation" and excellent operability, this coordinate measuring machine allows high-precision measurement for three-dimensional objects.

- A jogging unit with excellent operability is provided for each axis.
While moving an axis, the machine can be operated easily. - Since the main body has portal structure, the product is resistant to vibration, resulting in stable precision. Also a stone surface plate is used and therefore the product is resistant to temperature change, resulting in stable precision at ordinary temperature.
- Measurement = Three-dimensional rotation, reverse, enlargement/reduction, movement, and so on of prepared drawing can be conducted easily.
Output to IGES file allows easy editing on CAD/CAM.
- In addition to measurement of elements (point, line, surface, circle, sphere, cylinder) and indirect measurement in which measured elements are combined for calculation, geometric calculation (straightness, flatness, roundness, sphericity, cylindricity, position, parallelism, perpendicularity) is available.

EXLON Z III 453 : Specifications

Model	EXLON Z III 453
Measuring range for X axis	400 mm
Measuring range for Y axis	500 mm
Measuring range for Z axis	300 mm
Resolution	0.001 mm
Precision on each axis	$4+5 \mathrm{~L} / 1000 \mu \mathrm{~m}$
Operation method	Manual
Sliding section	LM guide
Sensor	Optical linear scale
Environmental conditions: Temperature	$18^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$
Environmental conditions: Humidity	$30 \% \sim 80 \%$
Sensor section	Electronic probe TP8
Personal computer	OS : Windows 7 Professional
A	$1,830 \mathrm{~mm}$
B	720 mm
C	800 mm
D	415 mm
E	495 mm
Weight	350 kg

Large sizes are also provided. Contact our company or your dealer.

What is a vernier caliper?

A vernier caliper is a measuring tool for use in the field that is used most widely for dimension measurement at present.
A slider and a scale are combined and a vernier scale is mounted to the outside jaw, allowing finer and more accurate reading of graduations of scale.

Origin of vernier caliper

It is said that the method of vernier scale was invented by Portuguese mathematician, Petrus Nonius (1492-1577). It is French Pierre Vernier that developed structure for accurate reading by mounting this method of scale to one measuring jaw of pass. In Germany, it is called Nonius.

Principle of vernier

By subdividing the reference graduations of main scale for accurate reading, a vernier scale is provided. Normally, if the graduations of main scale are in 1 mm steps, the vernier scale is provided by dividing ($n-1$) mm into n or $n / 2$ equal parts. For example, the following types of vernier scale are the greater part of Kanon calipers. (See Table 1.)
(1) 1. $n=20$ (divided into n equal parts) -> 19 mm is divided into 20 equal parts.
(ICM, ROBA, RA, etc.)
(2) 2. $n=40$ (divided into $\mathrm{n} / 2$ equal parts) $->39 \mathrm{~mm}$ is divided into 20 equal parts.
(PITA, KSM-FF, M45 to M100, SM150 to 300, etc.)
(3) 3. $n=50$ (divided into n equal parts) $->49 \mathrm{~mm}$ is divided into 50 equal parts.
(SCM, SCML, FCM, etc.)
For easy understanding of the principle, take an example of scale in 1 mm steps with vernier scale of 9 mm divided into 10 equal parts ($n=10$). For example, as shown in Fig. 1, the 9 graduations (9 mm) on the main scale (in 1 mm steps) divided into 10 equal parts configure a vernier scale. One graduation on the scale is 0.9 mm . Consequently, the difference of one graduation between the main scale and the vernier scale is 1 mm $-0.9 \mathrm{~mm}=0.1 \mathrm{~mm}$. This shows a case that graduation 0 on the main scale matches with graduation 0 on the vernier scale, namely the slider is at the leftmost position without any object to be measured. (Fig. 1)

Then, suppose that a string of 0.1 mm in thickness is put in the outside jaw. The vernier scale slides to the right by 0.1 mm , and graduation 1 on the vernier scale that is 0.1 mm shorter than the main scale matches with graduation 1 on the main scale. (Fig. 2) From the reverse point of view, reading this graduation on the vernier scale indicates the quantity of sliding of the vernier scale, namely the dimension of object to be measured (0.1 mm). If the vernier scale slides further and graduation 2 matches, the measured value is 0.2 mm . If graduation 3 matches, the value is 0.3 mm .

In other words, the deviation of graduation 0 on the main scale from graduation 0 on the vernier scale is the measured value. In the case of Fig. 3, the method of reading is expressed as shown below. Deviation of graduation 0 between main scale and vernier scale $=$ Graduation of main scale $(2 \mathrm{~mm})+(8 \mathrm{X} \mathrm{1} 110 \mathrm{~mm})=2.8 \mathrm{~mm}<-$ Measured value As shown above, a vernier scale that is graduated in smaller values than the main scale is used to read finer and more accurate dimensions. This is the principle of vernier.

Example of actual measurement

In the example on the previous page, 9 mm is divided into 10 equal parts and therefore values can be read in 0.1 mm steps. Here, we show a case of currently popular vernier scale on which 19 mm is divided into 20 equal parts (1).
One graduation of this vernier scale is $19 \mathrm{~mm} / 20=0.95 \mathrm{~mm}$. The deviation of one graduation from the main scale is $1 \mathrm{~mm}-$ $0.95 \mathrm{~mm}=0.05 \mathrm{~mm}$, which is minimum reading. Consequently, values can be read in $5 / 100 \mathrm{~mm}$, namely, $1 / 20 \mathrm{~mm}$ steps. (Fig. 4) Similarly, in the case of division of 39 mm into 20 equal parts (2), values can be read in $1 / 20 \mathrm{~mm}$ steps (Fig. 5). In the case of division of 49 mm into 50 equal parts (3), values can be read in 0.02 mm , namely $1 / 50$ steps (Fig. 6).
(A) How to read $1 / 20 \mathrm{~mm}$ vernier

In the case of Fig. 7, the 5th graduation of vernier matches. $9 \mathrm{~mm}+(1 / 20 \mathrm{~mm} \times 5)=9 \mathrm{~mm}+0.25 \mathrm{~mm}=9.25 \mathrm{~mm}$
Consequently, the 5th graduation of vernier scale indicates 25 for easy reading.
(B) How to read $1 / 50 \mathrm{~mm}$ vernier

In the case of Fig. 8, the 6th graduation of vernier matches.
$5 \mathrm{~mm}+(1 / 50 \mathrm{~mm} \times 6)=5 \mathrm{~mm}+0.12 \mathrm{~mm}=5.12 \mathrm{~mm}$
Consequently, the 6th graduation of vernier scale indicates 11 similarly.

Fig. $4 \quad 1 / 20 \mathrm{~mm}$ vernier (19 graduations, 20 equal parts)

Fig. $5 \quad 1 / 20 \mathrm{~mm}$ vernier (39 graduations, 20 equal parts)

Fig. 6 1/50 mm vernier (49 graduations, 50 equal parts)

Scale type of Kanon vernier calipers Table 1 (JIS B7507 standard)

1 graduation of main scale	1 mm			
Method of vernier scale	49 graduations -> 50 equal parts	19 graduations -> 20 equal parts	39 graduations -> 20 equal parts	29 graduations -> 10 equal parts
Minimum reading	$1 / 50=0.02 \mathrm{~mm}$	$1 / 20=0.05 \mathrm{~mm}$		$1 / 10=0.1 \mathrm{~mm}$
Applicable Kanon calipers	LSDM, ESDM, SDM, BSDM, FCM, SDM, SCM, SCML	TH, SM7, RA, ROBA, ICM	PITA, RM-DX, RM-S, BSD-P, SD-P, KSM-FF, SM150 ~300, M45~100, LSM	RM (II)

Features of Kanon calipers

Kanon calipers, for which the tradition of Kanon and its excellent technology are fully used from standard products such as KSM-FF and SM to special products, are commonly acknowledged first-class products concerning quality and precision.

1. Material

Since high-quality stainless steel (SUS420J2) that is selected carefully is refined completely, rust is not generated and aged deterioration does not occur.

2. Overall quenching

Not only measuring surfaces but also the main scale are quenched completely, the product has excellent resistance to flaw and wear.

3. Power of two lines of Kanon

Since two grooves are provided on the scale surface, the scale can be easily read and is resistant to flaw. Also galling does not occur easily and smooth sliding can be conducted. (PITA, KSM-FF, etc.)

4. Graduation lines

Graduation lines and numbers are processed with a Kanon original method, and accurate and uniform lines are obtained. Also chromium matte plating is applied to the scale surface, clear and easy reading is available without fatigue of eyes.

5. Excellent precision quality

Each part is processed uniformly with latest special-purpose machines for vernier calipers under a rational mass production system and keeps high precision even after assembly.

Vernier caliper
Verinier,dial and digital calipers

1. Scope

This standard specifies calipers of which the maximum measuring length is $1,000 \mathrm{~mm}$ or less among general vernier calipers of which the resolution or the minimum reading is $0.1 \mathrm{~mm}, 0.05 \mathrm{~mm}, 0.02 \mathrm{~mm}$ or 0.01 mm and which are used for measuring outside dimension and inside dimension (hereafter referred to as caliper).

2. Definition of terms

The definition of principal terms used in this standard conforms to JIS B 7507 and additionally is described below.

Measuring instrument in which the main scale that is equipped with a jaw with measuring surfaces for outside and inside on one end is configured as a reference component, a slider that is equipped with a jaw including a measuring surface that is parallel with the above measuring surfaces slides, and the distance between measuring surfaces is read on the main scale and the vernier scale or on the dial scale or through electronic digital display.

(2) Vernier scale

Scale for reading detailed graduations of main scale graduations of which the graduations are obtained by dividing ($n-1$) graduations of main scale into n or $n / 2$ equal parts. Also it is called subscale.

(3) Dial scale

Disk type scale in which the slider moving quantity is enlarged mechanically by gears or the like and is read through a rotating pointer.

(4) Electronic digital display

Numeric display in which the slider moving quantity is detected based on the main scale and indicated numerically by counting with an electronic circuit.
 (5) Instrumental error}

Value obtained by subtracting real value to be indicated from the read value on the caliper.

3. Notes on use

(1) Since the caliper is not equipped with any constant pressure device, proper and uniform measurement power must be used for measurement.
Note that measurement at the base or the tip of jaw may cause particularly a larger error
(2) On electronic digital display, consider sufficiently that the last digit of indicated value is uncertain within the range of 1 . Attention must be paid particularly to the operating environment. For example, a magnetic field, electric field, and humidity influence the function of electronic parts.

4-1. Instrumental error of caliper

The tolerance of instrumental error of caliper is shown in Table 1.

Table 1. Tolerance of instrumental error of caliper

Measuring length		Graduation, resolution or minimum reading	
		0.1 or 0.05	0.02 or 0.01
	50 or less	± 0.05	± 0.02
More than 50	100 or less	± 0.06	± 0.03
More than 100	200 or less	± 0.07	
More than 200	300 or less	± 0.08	± 0.04
More than 300	400 or less	± 0.09	
More than 400	500 or less	± 0.10	± 0.05
More than 500	600 or less	± 0.11	
More than 600	700 or less	± 0.12	± 0.06
More than 700	800 or less	± 0.13	
More than 800	900 or less	± 0.14	± 0.07
More than 900	1000 or less	± 0.15	

Remarks 1. Values in the table are for $20^{\circ} \mathrm{C}$.
2. These values include measurement errors caused by straightness and parallelism of measuring surface.

4-2. Deviation of zero point of depth bar

[^1]
PARTS LIST

Name Model		1	2	3	4	5	6	7	8
		Slider clamp	Upper screw	Lower screw	Leaf spring	Fine adjust clamp	Fine adjust nut	Fine adjust bar screw	Screw for vernier scale
SCM	15	\bigcirc	-						
SCM	20	\bigcirc	-						
SCM	30	\bigcirc	-						
SCM	40	\bigcirc	-						
SCM	45	\bigcirc							
SCM	50	\bigcirc							
SCM	60	\bigcirc							
SCM	100	\bigcirc							
SCM	150	\bigcirc							
SCM	200	\bigcirc							
$\begin{aligned} & \text { SCM } \\ & \text { SCM } \end{aligned}$	250	\bigcirc							
	300	\bigcirc							
SCML	3045	\bigcirc	-						
SCML		\bigcirc							
SCML	50	\bigcirc							
SCML	60	\bigcirc							

PARTS LIST

SDM type

Model Name		1	2	3	4	5	6	7
		Slider clamp	Upper screw	Lower screw	Leaf spring	Fine adjust clamp	Fine adjust nut	Fine adjust bar screw
SDM	15	\bigcirc						
SDM	20	\bigcirc						
SDM	30	\bigcirc						
SDM	40	\bigcirc						
SDM	50	\bigcirc						
SDM	60	\bigcirc						
SDM	100	\bigcirc						
BSDM	15	\bigcirc						
$\begin{aligned} & \text { BSDM } \\ & \text { BSDM } \end{aligned}$	20	\bigcirc						
	30	\bigcirc						
LSDM	15×15	\bigcirc						
LSDM	15×20	\bigcirc						
LSDM	15×25	\bigcirc						
LSDM	20×15	\bigcirc						
LSDM	20×20	\bigcirc						
LSDM	20×25	\bigcirc						
LSDM	30×15	\bigcirc						
LSDM	30×20	\bigcirc						
LSDM	30×25	\bigcirc						
SD	15P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-
SD	20P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-
SD	30 P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-
BSD	15 P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-
$\begin{aligned} & \mathrm{BSD} \\ & \mathrm{BSD} \\ & \hline \end{aligned}$	20P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-
	30P	\bigcirc	-	\bigcirc	\bigcirc	-	-	-

SHT-3 type
SHT-1 type

$\mathrm{Model}^{\text {Name }}$	1	2	3	4	5	6	7	8	9	10
	Slider clamp	Upper screw	Lower screw	Leaf spring	Lock screw	Fine adjust nut	Fine adjust bar screw	Fine adjust nut holder	Fine adjust blacket nut	Main scale adjust nut
SHT-3-30JSHT-3-60J	\bigcirc									
	\bigcirc									
Model Name	11	12	13	14	15	16	17	18	19	20
	Main scale bar screw	Main scale nut holder	Main scale blacket nut	Main scale fixing nut	Magnifier	Magnifier frame	Magnifier bar	Scriber box	Box clamp	Screw for vernier scale
SHT-3-30J SHT-3-60J	\bigcirc									
	\bigcirc									

\qquad	1	2	3	4	5	6	7	8	9	10
	Slider clamp	Upper screw	Lower screw	Leaf spring	Lock screw	Fine adjust nut	Fine adjust bar screw	Fine adjust nut holder	Fine adjust blacket nut	Main scale adjust nut
SHT-1-30J	\bigcirc									
SHT-1-60J	\bigcirc									
SHT-1-100	\bigcirc									
SHT-1-150	\bigcirc									
SHT-1-200	\bigcirc									

Model Name	11	12	13	14	15	16	17	18	19	20
	Main scale bar screw	Main scale nut holder	Main scale blacket nut	Main scale fixing nut	Magnifier	Magnifier frame	Magnifier bar	Scriber box	Box clamp	Screw for vernier scale
SHT-1-30J	\bigcirc									
SHT-1-60J	\bigcirc									
SHT-1-100	\bigcirc									
SHT-1-150	\bigcirc									
SHT-1-200	\bigcirc									

Memo

"Reliable measured values" of Kanon contribute to "reliable manufacturing."

Torque equipment general catalog

Please feel free to inquire about products and request catalogs.

- Origin of KANON Mark -

The KANON mark is a symbol of technology of Nakamura Mfg. Co., Ltd., which was established at the time of foundation. Kanon is a Latin word that means "Standard." We selected this word because we think that our products on which the KANON mark is printed must be "KANON" of all measuring equipment, namely the best model product.

Producted by :
 NAKAMURA MFG.CO.,LTD.

4-4, Ohi 4-chome, Shinagawa-ku, Tokyo 140-0014, Japan TEL: +81-3-3775-1527 FAX: +81-3-3775-1732

[^0]: Large sizes (up to $2,000 \mathrm{~mm}$) are supported. Contact our company or your dealer.

[^1]: For calipers with a depth bar for measurement of depth, the deviation of zero point must be 0.02 mm or less.

